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Convection in horizontal cavities 
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ATCT Bell Laboratories, Murray Hill, New Jersey 07974 

(Received 8 July 1985) 

Flows in water-filled rectangular cavities due to an applied horizontal temperature 
gradient are examined for Rayleigh numbers, based on height, R 2 lo6 and aspect 
ratios (length/height) L 2 2. Laser Doppler velocimetry measurements of the 
horizontal velocity distribution throughout the core are complemented with local 
temperature measurements and interferometry observations. The results show that 
the core stream function is mpect-ratio dependent when R > O( lo5) and the Prandtl 
number is fixed. When R < lo6 it appears that the layers on the horizontal surfaces 
fill the cavity depth if L 2 3. For values of R 2 lo7 and L = 2 the motion in the core 
is extremely small and the mass flux occurs in layers adjacent to the horizontal walls. 
Computations of the heat transfer across the cavity are in good agreement with 
numerical solutions of the vertical boundary-layer equations. 

1. Introduction 
Thermally driven convective motions due to temperature gradients that are not 

aligned with gravity occur in numerous situations that are of interest to scientists 
in a variety of disciplines. Depending on the magnitude of certain parameters the 
applications include the heat transfer across thermopane windows, the spreading of 
smoke from fires in buildings, the cooling of nuclear reactors and the preparation of 
semi-conductor materials from the melt. Some geophysical and meteorological 
phenomena may also be modelled by such flow systems. The simplest realistic model 
for flows of this type is an enclosed two-dimensional rectangular cavity with 
differentially heated vertical end walls. Both horizontal surfaces are usually considered 
to be rigid and adiabatic, although recently some work has been done with rigid, 
perfectly conducting surfaces. From both the experimental and the analytical point 
of view the model is attractive, since it enables the experiment to be well controlled, 
and the symmetrical boundary conditions reduce the mathematical complexity. 
Useful summaries of earlier work on the subject have been given by Batchelor (1954), 
Ostrach (1972) and Catton (1978); consequently, only a few works which deal with 
particular situations will be mentioned here. 

The controlling parameters in the two-dimensional situation are the Rayleigh 
number R, the Prandtl number 6, and the aspect ratio L (length/height). For many 
applications R, based on the cavity height, is large and the motion involves thin shear 
layers near the vertical surfaces. Descriptions of the flow-field structure in the core 
region, compatible with boundary layers on the end walls, have been given by Singh 
& Cowling (1963) for the magneto-hydrodynamic case and by Gill (1966) for a 
Newtonian fluid. These studies of the boundary-layer regime, R+ a, L fixed, 
demonstrated that for 6 > 1 the core was vertically stratified, consistent with the 

t Current address : Department of Mechanical Engineering, National Sun Yat-Sen University, 
Kaohsiung, Taiwan. 



22 P. G. Simpkim and K .  S. Chen 

experimental observations by Eckert & Carlson (1961) and by Elder (1965). None of 
the early experimental studies considered the flow near the horizontal surfaces and, 
in order to complete the analytical description, Gill had to assume the horizontal 
boundary layers were vanishingly small. Interest in the case when L > 1 has only 
developed recently with the realization that, for a given value of u, a variety of 
steady-state structures could occur depending on the relative magnitudes of R and 
L. At the two extremes, when L-t 00 with R fixed and R-t  00 with L fixed, the core 
flow is parallel to the horizontal boundaries, but other important features of the flow 
field are quite different. The limit ( L + ~ o ,  R fixed) originally examined by Hadley 
(1735) consists of a diffusion dominated core with dynamically passive, approximately 
square, end regions in which the flow turns through 180'. This limit has been studied 
by Cormack, Leal & Imberger (1974) and more recently by Hart (1983a). In contrast 
to the Hadley regime, the boundary-layer limit (R -t 00, L fixed) has a core flow which 
is stably stratified and diffusion is only important near the boundaries. Most of the 
temperature drop across the cavity in this case takes place near the end walls. There, 
the motion generated by large horizontal temperature gradients dominates the flow 
and provides the driving force for the overall circulation (see Gill 1966). 

The flow field evolution between the two limiting situations described above is not 
well understood. Particular situations have been considered numerically (see, for 
example, Quon 1977 and Vahl Davis & Jones 1982) but in general a coherent picture 
of the development has yet to be described. A number of approximate models, in 
which a selected core-flow behaviour is connected to a boundary layer on the vertical 
end walls, have also been proposed. The earliest of these models was given by Bejan 
& Tien (1978), who suggested that in the boundary-layer regime a Hadley cell core 
could be coupled to the end-wall boundary layers. This procedure led to a qualitative 
expression for the heat transfer across the cavity, but it must be emphasized that 
a detailed description of the flow field was not used to achieve the result. Rather, 
simple connection requirements imposed at the cavity mid-height on the velocity and 
temperature fields enabled certain unknowns to be evaluated. Since it is known that 
the Hadley limit, and perturbations due to increasing Rayleigh number, do not admit 
boundary-layer end-wall regions (see Cormack et al. 1974 and Hart 19833), the model 
must be regarded as an approximation for the heat transfer. Shiralkar, Gadgil & Tien 
(1981) introduced an outer flow characterized by boundary layers on the horizontal 
surfaces and a stagnant stratified core. Again connection to vertical end-wall 
boundary layers was made by matching at the mid-height, a procedure which does 
not reveal details of the corner flows. A modification of the above method was used 
by Tichy & Gadgil(l982) with the object of obtaining details of the flow field. Because 
of difficulties near the corner regions, however, and with matching to the core, a 
number of simplifying assumptions were introduced. In  particular, the horizontal 
boundary layers were assumed to be of constant thickness, thus implying that the 
core flow is parallel to the horizontal surfaces. Experimental observations in the 
large-Rayleigh-number, finite-aspect-ratio regime are often at  odds with such an 
assumption. 

Some experimental observations for L > 1 have recently been reported, but the 
amount of detailed information is limited. Bejan, Al-Homoud & Imberger (1981) 
described some high-Rayleigh-number measurements in a cavity of aspect ratio 
L = 16. Their results with water indicate that the core flow is not parallel to the 
horizontal surfaces and that it is dominated by intrusion jets near these surfaces. 
Estimates of the core shear profiles were made by tracking the dye streeks from 
potassium permanganate pellets dropped into the cavity. Simpkins & Dudderar 
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(1981) measured the core shear profiles in cavities with aspect ratios L < 9 and found 
that the core stream function is strongly L-dependent when R > lo4. These results 
suggested that, in the regime under examination, the horizontal boundary layers 
significantly affect the core flow field. Measurements of the heat transfer across 
water-filled cavities with L = 5 and with L = 16 have been given by Kamotani, Wang 
6 Ostrach (1983). Detailed velocity distributions using laser-Doppler velocimetry 
have been reported recently by Kirdyashkin (1984) for a rectangular geometry, and 
by Schiroky & Rosenberger (1984) for a horizontal cylindrical geometry. Both of these 
works confirm that the shear layers adjacent to the horizontal surfaces are often a 
significant fraction of the cavity height and therefore, the diffusive effects are 
important. 

When the horizontal surfaces are conducting rather than insulated, thermal 
oscillations can occur in the flow. Briggs & Jones (1982, private communication) have 
observed such oscillations in a unit aspect ratio, water-filled cavity, and also noted 
that the periodicity did not persist under the same thermal conditions when the 
horizontal surfaces were made adiabatic. Numerical computations qualitatively 
support these observations and confirm that centro-symmetric behaviour persists 
even in the periodic state. Hart (1972) showed that, for the Hadley cell, the thermal 
field is statically unstable when the horizontal surfaces are conductive because the 
local vertical temperature gradient is negative. In  this situation the transverse modes 
are the most unstable but derive their energy from different sources depending on 
the value of the Prandtl number. All of the work reported below is for insulated 
horizontal boundaries and the matter of conducting walls will not be considered 
further. 

Some of the results presented in this paper have been reported briefly at a NATO 
Advanced Study Institute on Natural Convection (see Simpkins & Chen 1985). 

2. Models and appropriate scaling laws 

a rectangular cavity with differentially heated end walls are 
Subject to the Boussinesq approximation the governing equations for the flow in 

and 

In the above expressions p i s  the temperature measured from the left-hand cold wall 
at  Z = 0, and it is made dimensionless by the temperature difference T: acting across 
the cavity. The stream function 3 is non-dimensionalized with respect to the thermal 
diffusivity K* .  Distances are made dimensionless with respect to h* the cavity height, 
and are defined by a Cartesian coordinate system (Z, i )  whose origin is a t  the lower 
corner of the cold wall. Also in (1) 

g*/3*T: h*3 
R =  

V*K* ’ 
is the Rayleigh number and 

v* 
K* 

g = -  

(3) 

(4) 

is the Prandtl number, where g* is the acceleration due to gravity, /3* is the coefficient 
of thermal expansion and v* is the kinematic viscosity. 
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Appropriate boundary conditions on the vertical end walls are 

1 - a$ $=-=O,T= 3% 1 (Z= L), 

where L is the cavity aspect ratio. It is assumed that the horizontal boundaries are 
adiabatic in all that follows, so that 

As noted by Gill (1966), the above equations and boundary conditions possess the 
following centro-symmetry properties 

1 $(., 5)  = $(L -$, 1 - Z), 

T(Z,Z) = 1-F(L-5 , l -5) .  
(7) 

2.1. Hadley limit - RJixed, L+ co 
This limiting behaviour has been studied by Cormack, Leal & Imberger (1974) and 

by Hart (l972,1983a, 13). Following the arguments ofCormack etal., the characteristic 
length scale for the core in the $-direction is O(L) ; thus the coordinates are scaled 

For a constant longitudinal temperature gradient, the vorticity and energy equations 
in the core possess an exact parallel flow solution. When centro-symmetry is satisfied, 
the solution is given by - 

RC 
24L 3 = - - 2 2 ( 1 - 2 ) 2 ,  

or 

and 

Thus, the core consists of a parallel shear flow, with a simple cubic velocity profile, 
which is driven by a horizontal temperature gradient. Diffusion is the dominant 
mechanism in the core, and heat is transferred across the cavity primarily by 
conduction. Figure 1 shows, schematically, the temperature distribution across the 
core and its derivatives. As noted by Hart (1983b), vertical variations in are 
everywhere statically stable. 

The constant C can be written as a regular expansion in inverse powers of L whose 
coefficients are found by matching with the solution in the end region of the cavity 
as X - t O .  Near each end of the cavity the flow must turn through 180" to satisfy the 
zero mass flux conditions on the end walls. These regions are approximately square 
and, in contrast to the boundary-layer limit, dynamically passive. Since the velocity 
field in the core is parallel to all orders in L-' this structure necessitates that all 
streamlines eventually enter the end region. Furthermore, the scaling used for the 
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Arbitrary scale 

FIQURE 1 .  Thermal field in a Hadley cell. 

horizontal velocity in the core must be maintained in the analysis of the end region, 
which has characteristic length scales of O(h*).  Hence (1) and (2) must be solved 
subject to (6), (7) and the matching conditions as x = Z+ 00. This procedure has been 
carried out by Cormack et al. (1974) for R = O(1) and by Hart (1983b) for R = O(L).  
The approaches for the core structure are essentially similar; the different orders 
chosen for R lead to a re-ordering of the terms in the expansions. Note, however, that 
the end structures for the two approaches are very different. Numerical solutions by 
Cormack et al. (1974) for the Hadley regime show that as L+ 00, 

C - 1 - 3.48 x lo-' R2/L3; (1la) 

t o  this order C is independent of cr. Prandtl number effects arise from the end layers, 
and in the limit considered by Hart (1983b), (1 1 a )  is replaced by 

c = 1 + L-lF{;, cr} + . . 
Hart found that for cr sufficiently small the associated end-layer structure does not 
even permit a parallel flow core. 

2.2.  Boundary layer limit - R+ 00, LJixed 
Analytical studies of this limit have been reported by Gill (1966), Blythe & Simpkins 
(1977), and Blythe, Daniels & Simpkins (1983). When the Rayleigh number is large, 
diffusive effects are confined to thin viscous and thermal layers near the cavity walls. 
Adjacent to the vertical end walls a balance occurs between convection, viscous and 
buoyancy effects. The structure of a boundary layer of this type is well known (see 
Squire 1953 and Gill 1966), and it has a thickness O(R-4). Suitable independent 
variables for the vertical boundary layer on the cold wall are 

z =  R-42, z =  8, (12) 

p(E,2;R,cr) =R+b(2,2;cr)+ . . . )  qz,z;R,a)=5!(2,s;a)+ . . .  . (13) 

and the dependent variables have local expansions of the form 
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Consistent with (13), the corresponding core structure implies that the flow is 
vertically stratified, with 

T, = !P$; a), $, = $,(e; a). (14) 

At this stage the core variables !P, and are unknown and must, in general, be 
determined from the solutions of both the vertical and the horizontal boundary-layer 
equations. Unfortunately the structure of the horizontal layers has not yet been 
found. However, for the singular limit a+ 00, applied subsequently to  the formal 
boundary-layer scaling, Gill (1966) developed a core solution from the vertical 
boundary-layer equations alone, based on an Oseen approximation. This solution 
utilized the supplementary condition that all of the mass in the vertical boundary 
layers emptied into core, i.e. that the horizontal layers, whatever their structure, are 
negligibly thin. 

Another approximate solution, based on an integral technique, has been given by 
Blythe & Simpkins (1977). This non-linear solution utilized Gill’s mass flux hypothesis, 
but gave results in better accord with numerical computations than the linearized 
Oseen approximation. One particular result from the integral solution is useful for 
the present discussion. After a convenient transformation of the dependent variables, 
the core temperature gradient can be expressed as 

where 

Note that in (15) $-, = ~a(!J, and the results satisfy the centro-symmetry relations 
(7)  which, in the core, become 

$,(z) = Gm(1-2) ,  Pm(2) = l-!Pm(l-2). (17) 

The choice of the constant a in (15) depends on the form of the profile selected; a 
good choice is a = i. 

Schematics of the core temperature distribution and its first two derivatives are 
given in figure 2. Portions of the curves near z = (0, l ) ,  shown as chain-dotted lines, 
are anticipated adjustments which must occur across the horizontal boundary layers 
to comply with the imposed boundary conditions. These adjustments are not 
considered in the approximate methods, where the mass-flux hypothesis is sufficient 
to complete the solution. 

There are noticeable differences between the boundary-layer model of the core 
temperature field and the Hadley model of the same. Although the core flow is parallel 
to the horizontal surfaces in both cases, in the present limit the flow is stratified but 
non-diffusive. This result implies that  most of the temperature drop across the cavity 
takes place near the end walls. It is the vorticity generated in these regions, by the 
large horizontal temperature gradients, that dominates the flow and provides the 
driving force for the overall circulation. Motion in the core occurs only as a result 
of the entrainment and detrainment of mass via the vertical boundary layers (Gill 
1966). Diffusive effects are only important near the boundaries and the motion in the 
core essentially plays a passive role. If this is the case, then, as illustrated in figure 2, 
the stationary value of the core temperature gradient will be locally a minimum. 
Such a conclusion contrasts with the Hadley core where (dT/dz): is a maximum, see 
figure 1. The latter situation could only be achieved when R $ 1 if the layers near 
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FIQURE 2. Thermal field in the boundary-layer model. 

the horizontal surfaces diffuse throughout the core and merge together. Another 
manifestation of the differences between the temperature gradient profiles in the two 
limits is that sgn (deT/dze) changes. 

It is important to note that the boundary-layer model is not only valid for L < 1. 
For L > 1 the core structure is the same, but as noted earlier, layers adjacent to the 
horizontal surfaces eventually become large enough to make their presence felt, and 
ultimately they can fill the cavity. When this merged layer regime occurs, neither 
the boundary-layer description, nor the parallel-flow Hadley cell is appropriate. A 
different solution structure in which diffusive effects are taken into account across 
the core flow must then be developed. 

3. Experimental methods 
Various techniques have been used to examine the convective flows in cavities with 

2 < L < 5. Water was used as the test medium because of its suitability for 
non-invasive measurements and because the refractive index dependence on tem- 
perature is accurately known. The experimental arrangement is a modified design of 
one used earlier by Simpkins & Dudderar (1981). Quartz glass plate 4.8 mm (0.188 in) 
thick is used for the vertical sides of a channel which is 660 mm (22.5 in) long, 108 mm 
(4.30 in) high and 51.6 mm (2.03 in) broad. Two sheets of similar quartz glass form 
the bottom of the channel which is supported externally by an additional sheet of 
12 mm (0.5 in) Plexiglas. Inside the channel two copper thermodes form the vertical 
end walls which can be adjusted longitudinally, to alter the cavity length. These 
thermodes are insulated on the top with polystyrene foam, and on the rear surface 
with a composite layer of asbestos and Teflon; the side walls are separated from the 
quartz channel by a narrow gap (about 0.25 mm). 

Constant-temperature water, or methanol, is pumped from thermostatically 
controlled circulators to each of the thermodes, thus enabling a temperature 
difference to be generated across the cavity. Locally, the inlet and outlet temperatures, 
and the front surface temperature of each thermode is measured with copper- 
constantan thermocouples. Heat losses to the atmosphere are reduced by operating 
the circulators at temperatures equally above and below the ambient. During the 
experiments the laboratory temperature may vary by about + 1  "C over the, 
approximately three-hour, period in which the data are recorded. Prior to the 

2 Ftl166 
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measurements the apparatus has been in operation typically for about 4 h, which is 
about eight times the characteristic spin-up time O(h*l*/v*&). Surrounding the 
quartz chamber is a Plexiglas support structure which can be filled with additional 
polystyrene foam insulation. The support structure is mounted on jacks which enable 
the entire assembly to be moved vertically about f 4 cms relative to the plane of the 
laser Doppler velocimeter (LDV). 

3.1. The LDV system 
Local velocity measurements are made with a one-component LDV system operating 
in a forward-scattering, dual-beam mode. The principal components used in the 
system are a 35 mW helium-neon laser (Spectra-Physics), a high quantum efficiency, 
low dark current extended 5-20 photo-detector (EM1 9658R) and an autodyne 
frequency tracker (Communications and Electronics) ; see Wilmshurst & Rizzo (1974). 
A 400 mm focal length achromat forms the probe volume which has a waist diameter 
of approximately 0.25 mm. Within the probe volume there are about forty-five 
fringes between the ed2 points, with a spacing of approximately 5.2 pm. Directional 
velocity discrimination is achieved by frequency shifting both beams of the input 
signal. Differentially mixing the input signal from each of these two acousto-optic 
modulators superimposes a 50 kHz frequency on the fringe field. Calibration of the 
system is performed before and after each test by comparing the output recorded from 
a stationary scatterer, with that obtained directly from the differential signal of 
the acousto-optic modulators. These calibrations are typically in agreement to within 
f 5  Hz, which corresponds to a velocity of f 2 5  pm/s. A minimum of five hundred 
frequency samples are usually recorded for each measurement which is calculated 
from the ensemble average. Resolution of these data is believed to be accurate to 
50 pm/s. 

It should be emphasized that the interest here is strictly in the two-dimensional 
flow field. For large R the relevant length scale in the third dimension is the sidewall 
boundary larger thickness 6*. Provided S*/b* 4 1 ,  where b* is the breadth, the motion 
far from the wall is expected to be two-dimensional. Figure 3 shows a set of data taken 
about 1 cm apart spanwise to confirm the two-dimensionality of the core region. All 
other LDV measurements reported herein are from the cavity centre-plane to ensure 
minimal bias from the sidewalls. 

The optical components used to form the probe volume and to collect the 
transmitted signal, together with the photo-detector, are all mounted on a. rigid 
optical rail. Carriages mounted on twin-rail assemblies that are perpendicular to the 
optical path enable the LDV probe to be traversed over a distance of 30 cm and 
positioned to within an accuracy of 25 pm. Extraneous vibrations are minimized by 
installing the entire experimental arrangement on a pneumatically isolated optical 
table. 

3.2. Thermal instrumentation 
Local temperature measurements within the cavity are recorded at various distances 
from the endwalls with a chromel-alumel thermocouple probe made from 0.125 mm 
wire. The probe is mounted on an electro-mechanical traversing assembly which is 
driven by a synchronous motor. Observations of the probe output are recorded with 
a digital temperature sensor and a digital voltmeter. Prior to recording the temperature 
distributions the instrumentation was calibrated by the ice bath method ofestablishing 
a zero reference point and adjusting a one microvolt resolution e.m.f. supply directly 
to the NBS thermocouple table, thus eliminating the need for ambient compensation. 



Convection in horizontal cavities 29 

1 .o 

0.8 

0.6 

z 

0.4 

0.2 

( 

a 
a 

80 
b 

00 

c 

1 I 

-4  -2 

I I 

R = 2.0 

Centre line 
0 1 cm off centre 

DO 

83 

00 

.O 

0 

00 

0 
(. 

0 
0 

0 

0 

c. 
c 3  

0 
00 

00 I I 

2 4  
li 

FIGURE 3. Flow field two-dimensionality; R = 1.3 x lo8, L = 4. 

Each measurement therefore has an accuracy of about 0.5% and is taken to 0.1 "C 
resolution. 

Observations were also made of the convective flow field using a shearing 
interferometer similar to that described by Memkirch (1974) and by Bryngdahl 
(1965). A collimated 10 cm diameter HeNe laser beam was passed through the cell 
and onto a parallel sided holographic quality glass plate, which acts as the shearing 
element. When the incident beam passes through a region in which the refractive 
index varies, the interference fringes, which represent regions of constant density 
gradient, are distorted in the recording plane. The direction of the gradient is 
determined by the orientation of the shearing element relative to the incident beam. 
This method records regions of constant temperature gradient to an accuracy of about 
0.03 "C mm-' per fringe when the shearing element is inclined at 45" to the incident 
beam. 

4. Experimental results 
4.1. Velocity measurements 

Measurements of the horizontal velocity component across the cavity height at 
different P locations were made with R and L as the parameters. Figures 4 , 5  and 6 
show the velocity distributions measured in cavities with L = 2 and 4, at R x lo6 
and lo'. Comparison of these three results suggests that the motion illustrated in 

2-2 
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figure 4 is different from that observed in figures 5 and 6. In  figure 4 the layers 
adjacent to the horizontal surfaces almost fill the cavity and there is no evidence of 
a distinct core region. Within the experimental uncertainty, the stagnation line at 
the mid-plane Z = 2.0 (i.e. +L) is at the cavity half-height i = +. At each location 
approaching the hot wall the velocity profile changes noticeably. Warm fluid being 
ejected from the upper portion of the vertical boundary layer causes the upper layer 
to become progressively thicker. A corresponding decrease in the lower layer 
thickness occurs atj cold fluid is entrained into the boundary layer near the bottom 
corner of the hot wall. There is a marked increase in the maximum velocity of the 
cold layer at f = 3.78 at which location the position of the stagnation line has dropped 
to Z = 0.4. 
the aspect ratio fixed at L = 4. It is apparent that at the mid-plane the motion has 
altered significantly from that seen in figure 4:  the core has become motionless and 
all of the maas flux is occurring in layers adjacent to the horizontal surfaces. 
Asymmetry is also evident in the profile, the upper warm layer being about 30% 
thicker than the cool layer beneath it. The development of a motionless core is 
unexpected and suggests the possibility of a flow reversal occurring at larger values 
of R if changes in the core velocity gradient continue. This conjecture has not been 
tested in the present work, but complementary measurements by Bejan et al. (1981) 
do show flow reversals at larger values of R and L. 

A third set of traverses taken at approximately the same Rayleigh number, but 
with a smaller aspect ratio, are given in figure 6. These observations show that the 
motionless core persists throughout most of the cavity. Note, that in these profiles 
the mid-plane data are symmetric and that again the warm layer thickness grows 
as f increases. By f =  1.89 the departure from vertical symmetry is evident, 
indicating that the core flow is not parallel to the horizontal boundaries. 

The stream functions $ corresponding to particular velocity distributions given 
in figures 4 and 6 are shown in figures 7 and 8, respectively. Integration of the velocity 
profile data is carried out using a cubic spline fitting routine, which initially also 
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FIGURE 8. Core stream function for R = 107, L = 2. 

locates the ii = 0 position to ensure that mass conservation is preserved. This 
procedure leads to estimated errors of approximately three per cent in the stream- 
function calculations. Differences between the two flow-field situations described 
earlier are made more apparent by the stream-function profiles. For the case where 
the core is filled by the layers on the horizontal surfaces the stream function has a 
smooth, rounded profile. In contrast, the case for which the core is motionless exhibits 
a flatter profile of smaller amplitude; see figure 8. Both sets of data show some 
%-dependence, indicating that neithersituationconformsstrictly to the boundary-layer 
regime where @ is only a function of Z, (Gill 1966). All of the data recorded at the 
mid-plane, but not necessarily discussed here, are given in figure 9 as a function 
of R. Similar measurements taken earlier by Simpkins & Dudderar (1981) are also 
illustrated for comparison. Agreement between the two sets of measurements, taken 
by different methods, is good. Thus, the effect of the aspect ratio on the flow field 
is confirmed over the range lo5 < R 5 8 x lo', for 2 7. It is noteworthy that only 



Convection in horizontal cavities 

2.0 

1.0 

33 

I 1 I I 

- 

02.0 7, >loo 
0 1.0 >loo 1 I I 

10s 104 10' 106 107 1 08 
R 

FIQUFLE 9. Dependence of the core stream function on aspect ratio. -, Blythe et al. It-+ Q), Q+ ; 
---, Vahl Davis, L = 1, Q = 0.7. 

the data for L = 1 are close to the numerical solution given by Blythe et al. (1983) 
for the boundary-layer regime R-t 00, c-r+ a. Mention must be made of the result 
derived from the work presented in Bejan et al. (1981), see their figure 5 (b), from which 
a value of &L) N 0.56 can be deduced at R = 1.6 x lo8. 

4.2. 0bservation.s of the temperature distribution 
Temperature measurements across the cavity at various f locations are given in 
figure 10 and in figure 11. Across the mid-plane the temperature profiles are similar 
and, in dimensionless variables, the gradient at Z = 4 is, in both cases, (dT/di) = 0.52. 
This result is in the range 0.54 & 0.05 suggested by earlier investigators for the lami- 
nar boundary-layer regime in tall slender cavities; e.g. see Eckert & Carlson (1961) 
and Elder (1965). Near the hot wall the measurements in both figures show that the 
constant temperature gradient in the core becomes distorted, particularly near the 
upper surface. In  figure 10 the distortion at Z = 3.78 is especially pronounced: from 
flow visualizations it is known that this location is close to the axis of a secondary 
cell, see Simpkins & Chen (1985). The profile shape near the upper boundary suggests 
that the insulation is inadequate and that some heat loss is occurring; however, 
additional layers of neoprene matting made no significant difference to measurements 
in that vicinity. Interpolation of the data from figures 10 and 11 demonstrates that 
the isotherms are not parallel to the horizontal boundaries over most of the core 
region. This result is in accord with the velocity measurements and suggests that the 
flow field has not reached the boundary-layer limiting behaviour. 

The data given in figure 12 represent the largest Rayleigh number measurements 
recorded in the present experiments. Once again there is noticeable distortion of the 
temperature distribution near the upper boundary which persists to the mid-plane. 
Within the experimental accuracy the core temperature gradient is 0.50. 

Numerous interferograms have been taken of the convective flow field in the cavity 
by the wavefront shearing technique. Two typical steady state photographs are 
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FIQURE 10. Temperature distributions; R = 1.3 x lo6, L = 4. 
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FIQURE 11. Temperature distributions; R = lo7, L = 2. 

shown in figure 13. In  these tests, flows with Rayleigh numbers up to 1.6 x lo7 were 
examined for aspect ratios up to about three. The cavity length is restricted by the 
diameter of the collimated plane wave beam projected from the output lens, which 
is an air spaced doublet 112 mm in diameter, with a surface accuracy of 2h at 
632.8 nm. Within the limited range of aspect ratios that have been examined, the 
interferometry measurements confirm a number of findings. Most important is that, 
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FIGURE 13. Wavefront shearing interferograms; (a) R = 4.8 x lo", L = 3.2; (b )  R = 1.6 x lo', 
L = 1.8. 

after steady state is reached, there is no discernible unsteadiness in the data for 
periods up to six hours. Secondly, the pictures shown in figure 13 reaffirm the 
centro-symmetric nature of the flow field. Lastly, the single fringe which spreads 
across the cavity mid-point, particularly in figure 13 (b), emphasizes that the 
core temperature gradient is invariant. 

Successive integration of the fringe orders across the cavity depth at the mid-point 
yields the temperature gradient profile and the temperature distribution across the 
cavity. These results are shown in figure 14 for the corresponding interferograrns given 
in figure 13. Because the shearing procedure obscures the horizontal boundaries of 
the cavity the data is only relative, the total number of fringes in the regions adjacent 
to the surfaces being unknown. Nevertheless, the qualitative features given in 
figure 14 reveal that the two situations are quite different. The temperature and the 
temperature gradient profiles given in figure 14 (a) are similar to those expected for 
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FIGURE 14. Thermal distribution profiles corresponding to figure 13. (a)  R = 4.8 x lo', L = 3.2. 
( b )  R = 1 . 6 ~  lo', L = 1.8. 

a Hadley cell (see figure 1) suggesting that the core flow is highly diffusive. 
Corresponding distributions in figure 14 ( b )  illustrate a situation more reminiscent of 
the boundary-layer regime (see figure 2).  Note that diffusive effects are confined to 
regions near the horizontal surfaces where many fringe orders are evident, and that 
across the core (dT/dE) is constant. These findings are consistent with the 
thermocouple probe measurements. 
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FIQURE 15. Heat transfer across the cavity. Q x 7 for all data. (a) Bejan & Tien; (a) Blythe 
et al. R % 1 ,  r+m, numerical; (c) Present data; (d )  Kamotani et al., (e) Bejan et d. 

4.3. Heat transfer data 

Estimates of the net heat transfer per unit width have been computed in terms of 
the Nusselt number defined by 

from the velocity distributions and temperature measurements described previously. 
Cubic spline fitting routines and standard integration methods were used to perform 
these computations. The results are presented in figure 15 together with data from 
other sources where water was used as the test medium in cavities with L > 1. All 
of the current data lie above that recorded by Kamotani et ad. (1983) for L = 5, 
although the present L = 5 result is, within the experimental uncertainty, in 
agreement with those data. 

A numerical solution of the vertical boundary equations by Blythe et al. (1983) is 
in good agreement with the present measurements, which are consistently below the 
approximate solution due to Bejan & Tien (1978). For fixed Rayleigh and Prandtl 
numbers the data presented in figure 15 show that the heat transfer is inversely 
proportional to the aspect ratio L. 

A synopsis of heat transfer results, measurements of the core stream function and 
temperature gradient data is given in table 1. Some approximate method predictions 
and some numerical solutions are also included in the table. Differences in the current 
estimates of NuRf are within the anticipated numerical errors of the computations 
mentioned above. Most of this uncertainty is caused by adjustments made in the u(z )  
profile to satisfy continuity. 

Examination of table 1 suggests that the core temperature gradient and the heat 
transfer are not very sensitive measures of variations in R, L and r ~ .  In  contrast, the 
core stream function is seen to be very sensitive to changes in R and L and, to a lesser 
extent, to variations in r ~ .  Results given in table 1 also show that although the 
approximate models give good agreement with the characteristic values of the heat 
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$,(t) pa(:) NuRf R X  10-6 L Q Remarks 
A Bejan & Tien (1978) - 1.0 0.354 m 

Bejan et al. (1981) - 0.46* 0.22* 1220 16 7.1 X 
Bejan et a2. (1981) 0.56* 0.48* 0.25* 1590 16 7.1 X 

00 N 
00 A 

- - 

Blythe et d. (1983) 0.59 0.52 0.32 m - 
Blythe & Simpkins (1977) 0.66 0.57 0.30 m - 
Elder (1965) - 0.52* - 77 0.25 100 X 
Gill (1966) 0.76 0.41 - m m A 

Shiralkar et al. (1981) - 0.80* 0.27 10 5 1 A 
Simpkins & Dudderar (1981) 0.75 - - 2.5 2 1V X 
Simpkins & Dudderar (1981) 1 .O - - 1.5 4 108 X 
Simpkins & Dudderar (1981) 1.55 - - 2.9 9 1V X 
Tichy & Gadgil(l982) - 0.75 0.27 10 5 1 A 

- 
Quon (1972) 0.57 0.52* 0.27 0.8 1 7.1 N 

Vahl Davis & Jones (1982) 0.51 - 0.22 10-2 1 0.7 N 
Vahl Davis & Jones (1982) 0.52 - 0.28 1 .o 1 0.7 N 
Present 0.64 0.51 0.31 10.3 2 7.1 X 
Present 0.94 0.54 0.29 9.1 4 7.1 X 
Present 1.07 0.53 0.31 1.3 4 7.1 X 

TABLE 1. Comparison of the characteristic flow field properties from experimental (X), 
numerical (N), and approximate (A) data. Starred values are only estimates. 

transfer across the cavity,~ notable differences occur in the magnitude of the core 
temperature gradient necessary to achieve this. It should be noted here that the 
authors have stressed that their predictions of Nu are very sensitive to the constant 
of integration found from their various matching criteria. 

5. Conclusions 
The non-intrusive velocity and interferometry measurements, together with the 

locally recorded temperature distributions, reveal the following characteristic prop- 
erties of the convection in a rectangular cavity with v x 7. (i) For R > 0(106) the 
core stream function is dependent on the aspect ratio, confirming the visual 
measurements by Simpkins & Dudderar (1981). (ii) Away from the vertical endwalls 
when R N lo", L - 3, the flow comprises a slow moving core between thick layers 
adjacent to the horizontal surfaces. As R increases the LDV measurements reveal that 
the core horizontal velocity gradient decreases and the mass transported via the 
horizontal layers increases. This observation, which is confirmed by the interferometry 
data, suggests the possibility of a flow reversal evolving in the core at larger values 
of R. (iii) Measurements of the vertical temperature gradient are in good agreement 
with numerical solutions of the vertical boundary-layer equations. It has been noted, 
however, that this measurement is not a sensitive gauge of the flow field to changes 
in R and L. The observations suggest that the core is stably stratified with a 
characteristic temperature gradient of 0.53f0.03 for 10" < R Q lo8 and L > 1. (iv) 
Nusselt number computations based on the core velocity and core temperature 
measurements are in good agreement with the numerical solution of Blythe et al. 
(1983) and, to a lesser degree, with the approximation due to Bejan & Tien (1978). 
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